Progettazione geotecnica

Da EU wiki.
p.003  E_d \leq R_d (1.1)
LaTeX → E_d \leq R_d
p.004  E_d=E\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; a_d\right]
LaTeX → E_d=E\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; a_d\right]
p.004  E_d=\gamma_E E\left[F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right] \quad\left(\gamma_E=\gamma_F\right)
LaTeX → E_d=\gamma_E E\left[F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right] \quad\left(\gamma_E=\gamma_F\right)
p.004  R_d=\frac{1}{\gamma_R}\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right]
LaTeX → R_d=\frac{1}{\gamma_R}\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right]
p.004  E_d \leq R_d
LaTeX → E_d \leq R_d
p.004  E_d=E\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; a_d\right] (1.2)
LaTeX → E_d=E\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; a_d\right]
p.004  E_d=\gamma_E E\left[F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right] (1.2)
LaTeX → E_d=\gamma_E E\left[F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right]
p.004  R_d=\frac{1}{\gamma_R} R\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right] (1.3)
LaTeX → R_d=\frac{1}{\gamma_R} R\left[\gamma_F F_k ; \frac{X_k}{\gamma_M} ; {a}_d\right]
p.005  \gamma_{G1} \cdot G_1+\gamma_{G2} \cdot G_{2}+\gamma_P \cdot P+\gamma_{Q1} \cdot Q_{k1} +\gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2}+\gamma_{Q3} \cdot \Psi_{03} \cdot Q_{k 3}+\ldots (1.4)
LaTeX → \gamma_{G1} \cdot G_1+\gamma_{G2} \cdot G_{2}+\gamma_P \cdot P+\gamma_{Q1} \cdot Q_{k1} +\gamma_{Q2} \cdot \Psi_{02} \cdot Q_{k2}+\gamma_{Q3} \cdot \Psi_{03} \cdot Q_{k 3}+\ldots
p.007  DA1-C1 : (A1+M1+R1) (1.5)
LaTeX → DA1-C1 : (A1+M1+R1)
p.007  DA1-C2 : (A2+M2+R2) (1.6)
LaTeX → DA1-C2 : (A2+M2+R2)
p.007  DA2 : (A1+M1+R3) (1.7)
LaTeX → DA2 : (A1+M1+R3)
p.008  G_{1k}+G_{2k}+\psi_{21} Q_{k1}+\psi_{22} Q_{k2}+\ldots
LaTeX → G_{1k}+G_{2k}+\psi_{21} Q_{k1}+\psi_{22} Q_{k2}+\ldots
p.008  E_d=E\left[F_d ; X_k ; {a}_d\right]
LaTeX → E_d=E\left[F_d ; X_k ; {a}_d\right]
p.008  E_d \leq C_d
LaTeX → E_d \leq C_d
p.011  \sigma_{ij}^\prime=\sigma_{ij}-u \delta_{ij} (1.8)
LaTeX → \sigma_{ij}^\prime=\sigma_{ij}-u \delta_{ij}
p.011  \tau=\sigma^\prime \cdot \tan \varphi^\prime (1.9)
LaTeX → \tau=\sigma^\prime \cdot \tan \varphi^\prime
p.012  \tau=c^\prime+\sigma^\prime \cdot \tan \varphi^\prime (1.10)
LaTeX → \tau=c^\prime+\sigma^\prime \cdot \tan \varphi^\prime
p.016  \varphi^\prime-\varphi_{cv}^\prime=m \cdot DI <12^\circ (1.11)
LaTeX → \varphi^\prime-\varphi_{cv}^\prime=m \cdot DI <12^\circ
p.016  DI=D_R\left(10-\ln \left(p_F^\prime\right)\right)-1 (1.11)
LaTeX → DI=D_R\left(10-\ln \left(p_F^\prime\right)\right)-1
p.023  \tau=C_u (1.12)
LaTeX → \tau=C_u
p.024  \frac{c_u}{\sigma_{v 0}^\prime}=0.23 \cdot OCR^{0.8} (1.13)
LaTeX → \frac{c_u}{\sigma_{v 0}^\prime}=0.23 \cdot OCR^{0.8}
p.026  E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2}+\ldots (1.14)
LaTeX → E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2}+\ldots
p.027  E_d=E_k=E \left[F_k ; X_k ; a_d\right]
LaTeX → E_d=E_k=E \left[F_k ; X_k ; a_d\right]
p.027  R_d=\frac{1}{\gamma_R}\left[F_k ; X_k ; a_d\right]
LaTeX → R_d=\frac{1}{\gamma_R}\left[F_k ; X_k ; a_d\right]
p.027  E_d \leq R_d
LaTeX → E_d \leq R_d
p.028  E_d=E \left[F_k ; X_k ; a_d\right]
LaTeX → E_d=E \left[F_k ; X_k ; a_d\right]
p.028  E_d \leq C_d
LaTeX → E_d \leq C_d
p.029  T_R=-\frac{V_R}{\ln \left(1-P_{VR}\right)} (1.15)
LaTeX → T_R=-\frac{V_R}{\ln \left(1-P_{VR}\right)}
p.032  S=S_S \cdot S_T (1.16)
LaTeX → S=S_S \cdot S_T
p.032  V_{S, eq}=\frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S, i}}} (1.17)
LaTeX → V_{S, eq}=\frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S, i}}}
p.036  a_{\max }=S \cdot a_G=\left(S_s \cdot S_T\right) \cdot a_G (1.18)
LaTeX → a_{\max }=S \cdot a_G=\left(S_s \cdot S_T\right) \cdot a_G
p.037  F_h=k_h \cdot {W} (1.19)
LaTeX → F_h=k_h \cdot {W}
p.037  F_v=k_v \cdot {W} (1.20)
LaTeX → F_v=k_v \cdot {W}
p.038  k_h=\beta \cdot \frac{a_\max}{g} (1.21)
LaTeX → k_h=\beta \cdot \frac{a_\max}{g}
p.038  k_v=\pm 0,5 \cdot k_h (1.22)
LaTeX → k_v=\pm 0,5 \cdot k_h
p.039  k_h=\alpha \cdot \beta \cdot \frac{a_\max}{g} (1.23)
LaTeX → k_h=\alpha \cdot \beta \cdot \frac{a_\max}{g}